
8 October 19968 October 1996
8 October 19968 October 1996 Page Page 11 of 23 of 23

Object-Orientation OverviewObject-Orientation Overview

B. W. BushB. W. Bush

Energy and Environmental Analysis GroupEnergy and Environmental Analysis Group

Los Alamos National LaboratoryLos Alamos National Laboratory

8 October 19968 October 1996

8 October 19968 October 1996 Page Page 22 of 23 of 23

OutlineOutline

•• definitionsdefinitions

•• key featureskey features

•• development processdevelopment process

•• analysisanalysis
•• designdesign

•• programmingprogramming

•• bibliographybibliography

A copy of these viewgraphs and additional notes is available at “http://bwb.lanl.gov/bwb.htm”.A copy of these viewgraphs and additional notes is available at “http://bwb.lanl.gov/bwb.htm”.

8 October 19968 October 1996 Page Page 33 of 23 of 23

DefinitionsDefinitions

•• “Something is “Something is object-orientedobject-oriented if it can be extended by if it can be extended by
composition of existing parts or by refinement of behaviors.composition of existing parts or by refinement of behaviors.
Changes in the original parts propagate, so that compositionsChanges in the original parts propagate, so that compositions
and refinements that reuse these parts change appropriately.”and refinements that reuse these parts change appropriately.”
[Goldberg][Goldberg]

•• An An objectobject has state, behavior, and identity. “An has state, behavior, and identity. “An objectobject is is
characterized by a number of operations and a state whichcharacterized by a number of operations and a state which
remembers the effect of these operations.” [Jacobson]remembers the effect of these operations.” [Jacobson]

•• “A “A classclass represents a template for several objects and represents a template for several objects and
describes how these objects are structured internally. Objectsdescribes how these objects are structured internally. Objects
of the same class have the same definition both for theirof the same class have the same definition both for their
operations and for their information structures.” [Jacobson]operations and for their information structures.” [Jacobson]

•• “An “An instanceinstance is an object created from a class. The class is an object created from a class. The class
describes the (behavior and information) structure of thedescribes the (behavior and information) structure of the
instance, while the current state of the instance is defined by theinstance, while the current state of the instance is defined by the
operations performed on the instance.” [Jacobson]operations performed on the instance.” [Jacobson]

8 October 19968 October 1996 Page Page 44 of 23 of 23

Key FeaturesKey Features

•• abstractionabstraction
–– “An “An abstractionabstraction denotes the essential characteristics of an denotes the essential characteristics of an

object that distinguish it from all other kinds of objects and thusobject that distinguish it from all other kinds of objects and thus
provide crisply defined conceptual boundaries, relative to theprovide crisply defined conceptual boundaries, relative to the
perspective of the viewer.” [Booch]perspective of the viewer.” [Booch]

–– allows building models which map to the real worldallows building models which map to the real world

•• encapsulationencapsulation
–– ““EncapsulationEncapsulation is the process of compartmentalizing the is the process of compartmentalizing the

elements of an abstraction that constitute its structure andelements of an abstraction that constitute its structure and
behavior; encapsulation serves to separate the contractualbehavior; encapsulation serves to separate the contractual
interface of an abstraction and its implementation.” [Booch]interface of an abstraction and its implementation.” [Booch]

–– hides implementation detailshides implementation details

8 October 19968 October 1996 Page Page 55 of 23 of 23

Key Features (continued)Key Features (continued)

•• inheritanceinheritance
–– “If class B “If class B inheritsinherits class A, then both the operations and the class A, then both the operations and the

information structure described in class A will become part ofinformation structure described in class A will become part of
class B.” [Jacobson]class B.” [Jacobson]

–– enables and organizes code reuseenables and organizes code reuse

•• polymorphismpolymorphism
–– ““PolymorphismPolymorphism means that the sender of a stimulus does not means that the sender of a stimulus does not

need to know the receiving instance’s class. The receivingneed to know the receiving instance’s class. The receiving
instance can belong to an arbitrary class.” [Jacobson]instance can belong to an arbitrary class.” [Jacobson]

–– reduces software maintenance and increases extensibility.reduces software maintenance and increases extensibility.

8 October 19968 October 1996 Page Page 66 of 23 of 23

ExampleExample

Type of Sign [stop, yield, etc.]

Traffic Sign

Is it okay to proceed? [stop & proceed, stop & wait, yield]

Location (x, y)
Incoming Street
Outgoing Streets

Traffic Control

Set location in plan
Get color of light
Get time remaining in phase

Timing plan
Current location in plan

Traffic Light
Identity

State /
 Attributes

Behavior /
Operations

EncapsulationEncapsulation

Inheritance

Polymorphism

Abstraction

Accelerate
Break
Park

Location
Speed
Acceleration
Driver

Vehicle

message →

8 October 19968 October 1996 Page Page 77 of 23 of 23

Usefulness of Object-OrientationUsefulness of Object-Orientation

•• issues addressedissues addressed
–– scheduling: meeting delivery datesscheduling: meeting delivery dates

–– complexity: modeling complex applicationscomplexity: modeling complex applications
–– size: managing interdependencies in large systemssize: managing interdependencies in large systems

–– compatibility: making different chunks of code inter-operatecompatibility: making different chunks of code inter-operate

•• benefitsbenefits
–– reuse of codereuse of code

–– reduced code sizereduced code size
–– increased productivityincreased productivity

–– lower defect ratelower defect rate

7/31/977/31/978 October 19968 October 1996 Page Page 88 of 23 of 23

Successful ProjectsSuccessful Projects

•• “The five habits of a successful object-oriented project include:“The five habits of a successful object-oriented project include:
–– “A ruthless focus on the development of a system that provides“A ruthless focus on the development of a system that provides

a well-understood collection of essential minimala well-understood collection of essential minimal
characteristics.characteristics.

–– “The existence of a culture that is centered on results,“The existence of a culture that is centered on results,
encourages communication, and yet is not afraid to fail.encourages communication, and yet is not afraid to fail.

–– “The effective use of object-oriented modeling.“The effective use of object-oriented modeling.
–– “The existence of a strong architectural vision.“The existence of a strong architectural vision.
–– “The application of a well-managed iterative and incremental“The application of a well-managed iterative and incremental

development life cycle.” [development life cycle.” [BoochBooch]]

8 October 19968 October 1996 Page Page 99 of 23 of 23

Successful Projects (continued)Successful Projects (continued)

•• “Why do certain object-oriented projects succeed? Most often, it“Why do certain object-oriented projects succeed? Most often, it
is because:is because:
–– “An object-oriented model of the problem and its solution“An object-oriented model of the problem and its solution

encourages the creation of a common vocabulary between theencourages the creation of a common vocabulary between the
end users of a system and its developers, thus creating aend users of a system and its developers, thus creating a
shared understanding of the problem being solved.shared understanding of the problem being solved.

–– “The use of continuous integration creates opportunities to“The use of continuous integration creates opportunities to
recognize risk early and make incremental corrections withoutrecognize risk early and make incremental corrections without
destabilizing the entire development effort.destabilizing the entire development effort.

–– “An object-oriented architecture provides a clear separation of“An object-oriented architecture provides a clear separation of
concerns among the disparate elements of a system, creatingconcerns among the disparate elements of a system, creating
firewalls that prevent a change in one part of the system fromfirewalls that prevent a change in one part of the system from
rending the fabric of the entire architecture.” [Booch]rending the fabric of the entire architecture.” [Booch]

8 October 19968 October 1996 Page Page 1010 of 23 of 23

Development ProcessDevelopment Process

•• analysisanalysis
–– requirements definitionrequirements definition

–– domain analysisdomain analysis
–– use cases / scenariosuse cases / scenarios

•• designdesign
–– architectural designarchitectural design
–– class designclass design

•• codingcoding

•• quality assurancequality assurance
–– teststests

–– inspections and reviewsinspections and reviews
–– metricsmetrics

8 October 19968 October 1996 Page Page 1111 of 23 of 23

Iterative Process Flow Chart [Kahn]Iterative Process Flow Chart [Kahn]

8 October 19968 October 1996 Page Page 1212 of 23 of 23

TRANSIMS Development ProcessTRANSIMS Development Process

Research

Architecture

Design

Coding

Testing

Design

Coding

Testing

Design

Coding

Testing

Design

Coding

Testing

time IOC-1

8 October 19968 October 1996 Page Page 1313 of 23 of 23

Cost of Defect [McConnell]Cost of Defect [McConnell]

8 October 19968 October 1996 Page Page 1414 of 23 of 23

AnalysisAnalysis

•• ““Object-oriented analysisObject-oriented analysis is a method of analysis that examines is a method of analysis that examines
requirements from the perspective of classes and objects foundrequirements from the perspective of classes and objects found
in the vocabulary of the problem domain.” [Booch]in the vocabulary of the problem domain.” [Booch]

•• ““Domain analysisDomain analysis attempts to understand the basic attempts to understand the basic
abstractions in a discipline. The goal of domain analysis is toabstractions in a discipline. The goal of domain analysis is to
determine a general domain model from which it is possible todetermine a general domain model from which it is possible to
develop multiple applications. . . . The outcome of a domaindevelop multiple applications. . . . The outcome of a domain
analysis is the identification of reuse opportunities acrossanalysis is the identification of reuse opportunities across
applications in a domain.” [Goldberg]applications in a domain.” [Goldberg]

•• Use cases are a tool for the Use cases are a tool for the definition of requirementsdefinition of requirements and the and the
analysis of the problem domainanalysis of the problem domain. Requirements are. Requirements are
generated both from the customer’s definition of the problemgenerated both from the customer’s definition of the problem
and results of analyzing the abstractions in the problem’sand results of analyzing the abstractions in the problem’s
domain.domain.

8 October 19968 October 1996 Page Page 1515 of 23 of 23

DesignDesign

•• design processdesign process
–– “Identify the classes and objects at a given level of abstraction.“Identify the classes and objects at a given level of abstraction.

–– “Identify the semantics of these classes and objects.“Identify the semantics of these classes and objects.
–– “Identify the relationship among these classes and objects.“Identify the relationship among these classes and objects.

–– “Specify the interface and then the implementation of these“Specify the interface and then the implementation of these
classes and objects.” [Booch]classes and objects.” [Booch]

•• architectural design principlesarchitectural design principles
–– layeringlayering
–– modularitymodularity

–– use of frameworksuse of frameworks

•• class design principlesclass design principles
–– coupling/cohesioncoupling/cohesion

–– completenesscompleteness
–– patternspatterns

•• diagrammingdiagramming

8 October 19968 October 1996 Page Page 1616 of 23 of 23

TRANSIMS ArchitectureTRANSIMS Architecture

Analyst
Toolbox

Database

Simplified
HCAD

Interim
Planner

Low Fidelity
Microsimulator

Input
Editor

Output
Visualizer

Populat’n
Synth.

Activity
Generator

Router
Goal

Measur.
Parallel
Toolbox

CA
Microsim.

GIS Statistics Animation Plotting

Estatblishment
Representation

Traveler
Representation

Activity
Representation

Plan
Representation

Vehicle
Representation

Network
Representation

Simulation
Output

Application

System

High-level subsystem

Low-level subsystem

Utility subsystem

8 October 19968 October 1996 Page Page 1717 of 23 of 23

Example Class Diagram (from Graph Layout Tool)Example Class Diagram (from Graph Layout Tool)

Graphical ToolObjectWindows Library

TGraphLayout

TGraphLayout
Application

TGraphLayout
Window

TEdgeLength
DialogTRandomizer

Dialog

TControlPanel
Dialog

TApplication

TWindow

TDialog

double,
double

TScreenMapper

8 October 19968 October 1996 Page Page 1818 of 23 of 23

Programming LanguagesProgramming Languages

•• C++C++

•• SmalltalkSmalltalk

•• CLOSCLOS

•• JavaJava
•• EiffelEiffel

•• Objective CObjective C

•• SimulaSimula

8 October 19968 October 1996 Page Page 1919 of 23 of 23

Programming Language Comparison [Goldberg]Programming Language Comparison [Goldberg]

8 October 19968 October 1996 Page Page 2020 of 23 of 23

Bibliography: ManagementBibliography: Management

•• G. Booch, G. Booch, Object Solutions: Managing the Object-OrientedObject Solutions: Managing the Object-Oriented
ProjectProject, (Menlo Park, California: Addison-Wesley, 1996)., (Menlo Park, California: Addison-Wesley, 1996).

•• A. Goldberg and K. S. Rubin, A. Goldberg and K. S. Rubin, Succeeding with Objects: DecisionSucceeding with Objects: Decision
Frameworks for Project ManagementFrameworks for Project Management, (Reading,, (Reading,
Massachusetts: Addison-Wesley, 1995).Massachusetts: Addison-Wesley, 1995).

•• I. Jacobson, M. Christerson, P. Johsson, and G. Övergaard,I. Jacobson, M. Christerson, P. Johsson, and G. Övergaard,
Object-Oriented Software Engineering: A Use Case DrivenObject-Oriented Software Engineering: A Use Case Driven
ApproachApproach, (Wokingham, England: Addison-Wesley, 1992)., (Wokingham, England: Addison-Wesley, 1992).

8 October 19968 October 1996 Page Page 2121 of 23 of 23

Bibliography: DesignBibliography: Design

•• G. Booch, G. Booch, Object-Oriented Analysis and Design withObject-Oriented Analysis and Design with
ApplicationsApplications, (Redwood City, California: Benjamin/Cummings,, (Redwood City, California: Benjamin/Cummings,
1994).1994).

•• D. Collins, D. Collins, Designing Object-Oriented User InterfacesDesigning Object-Oriented User Interfaces,,
(Redwood City, California: Benjamin/Cummings, 1995).(Redwood City, California: Benjamin/Cummings, 1995).

•• E. Gamma, R. Helm, R. Johnson, and J. Vlissides, E. Gamma, R. Helm, R. Johnson, and J. Vlissides, DesignDesign
Patterns: Elements of Reusable Object-Oriented SoftwarePatterns: Elements of Reusable Object-Oriented Software,,
(Reading, Massachusetts: Addison-Wesley, 1995).(Reading, Massachusetts: Addison-Wesley, 1995).

•• M. Lorenz, M. Lorenz, Object-Oriented Software DevelopmentObject-Oriented Software Development, (Englewood, (Englewood
Cliffs, New Jersey: Prentice Hall, 1993).Cliffs, New Jersey: Prentice Hall, 1993).

•• J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Lorensen, Object-Oriented Modeling and DesignObject-Oriented Modeling and Design, (Englewood, (Englewood
Cliffs, New Jersey: Prentice Hall, 1991).Cliffs, New Jersey: Prentice Hall, 1991).

•• N. Wilkinson, N. Wilkinson, Using CRC CardsUsing CRC Cards, (New York: SIGS Books,, (New York: SIGS Books,
1995).1995).

8 October 19968 October 1996 Page Page 2222 of 23 of 23

Bibliography: CodingBibliography: Coding

•• R. G. G. Cattel, R. G. G. Cattel, Object Data ManagementObject Data Management, (Reading,, (Reading,
Massachusetts: Addison-Wesley, 1994).Massachusetts: Addison-Wesley, 1994).

•• S. Khoshafian, Object-Oriented Databases, (New York: JohnS. Khoshafian, Object-Oriented Databases, (New York: John
Wiley & Sons, 1993).Wiley & Sons, 1993).

•• W. LaLonde, W. LaLonde, Discovering SmalltalkDiscovering Smalltalk, (Redwood City, California:, (Redwood City, California:
Benjamin/Cummings, 1994).Benjamin/Cummings, 1994).

•• M. Lorenz, M. Lorenz, Rapid Software Development with SmalltalkRapid Software Development with Smalltalk, (New, (New
York: SIGS Books, 1995).York: SIGS Books, 1995).

•• R. C. Martin, R. C. Martin, Designing Object-Oriented C++ Applications UsingDesigning Object-Oriented C++ Applications Using
the Booch Methodthe Booch Method, (Englewood Cliffs, New Jersey: Prentice-, (Englewood Cliffs, New Jersey: Prentice-
Hall, 1995).Hall, 1995).

•• R. Otte, P. Patrick, and M. Roy, R. Otte, P. Patrick, and M. Roy, Understanding CORBAUnderstanding CORBA, (Upper, (Upper
Saddle River, New Jersey: Prentice-Hall, 1996).Saddle River, New Jersey: Prentice-Hall, 1996).

8 October 19968 October 1996 Page Page 2323 of 23 of 23

Bibliography: Quality AssuranceBibliography: Quality Assurance

•• T. Gilb and D. Graham, T. Gilb and D. Graham, Software InspectionSoftware Inspection, (Wolkingham,, (Wolkingham,
England: Addison-Wesley, 1993).England: Addison-Wesley, 1993).

•• S. H. Kan, S. H. Kan, Metrics and Models in Software Quality EngineeringMetrics and Models in Software Quality Engineering,,
(Reading, Massachusetts: Addison-Wesley, 1995).(Reading, Massachusetts: Addison-Wesley, 1995).

•• S. Maguire, S. Maguire, Debugging the Development ProcessDebugging the Development Process, (Redmond,, (Redmond,
Washington: Microsoft Press, 1994).Washington: Microsoft Press, 1994).

•• S. McConnell, S. McConnell, Code CompleteCode Complete, (Redmond, Washington:, (Redmond, Washington:
Microsoft Press, 1993).Microsoft Press, 1993).

	Object-Orientation Overview
	Outline
	Definitions
	Key Features
	Example
	Usefulness of Object-Orientation
	Successful Projects
	Development Process
	Iterative Process Flow Chart
	TRANSIMS Development Process
	Cost Defect
	Analysis
	Design
	TRANSIMS Architecture
	Example Class Diagram (from Graph Layout Tool)
	Programming Languages
	Programming Language Comparison
	Bibliography: Management
	Bibliography: Bibliography: Design
	Bibliography: Bibliography: Coding
	Bibliography: Quality Assurance

